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Abstract—Neural networks recently gained attention as a fast Ngj Number of times thgth base model is reused in the
and flexible vehicle to microwave modeling, simulation, and low-level neural modules of theth library model.
optimization. This paper ad_dres_ses a new task in this area, . Total number of models in a library.
namely,_the development of Ilbrarle_s of neural mode_ls f_o_r passive N7 Total number of low-level neural modules in théh
and active components, a task with a potential significance to L .
many microwave simulators. However, developing libraries of library model.
neural models is very costly due to massive data generation and U™  Input vector of all the low-level neural modules of
repeated neural network training. A new hierarchical neural the nth library model.
network approach is presented in this paper, allowing both — ,n 35yt vector of theith low-level neural module for
microwave functlonal knowledge and library inherent struc_tural ¢ the nth library model
knowledge to be incorporated into neural models. The library : .
models are developed through a set of base neural models, which U} () ith knowledge hub for theth library model.
capture the basic characteristics common to the entire library, V™  Weight vector of the high-level neural module for
and high-level neural modules which map the information from the nth library model.
base mo.dels to the library model outputs. The proposed method W, Weight vector for thejth base model.
substantially reduces the cost of library development thr_oggh X" Input vector of thenth library model
reduced need for data collection and shortened time of training. _ e y :

The technique is demonstrated through transmission line and X" Input part of thekth training sample for thesth
FET library examples. ~library model.
Index Terms—Circuit simulation, modeling, neural network. Xka Input vector of thejth .bese model.
X%"  Input part of thekth training sample for thgth base
model.
SUMMARY OF NOTATIONS FOR THE PROPOSEDHIERARCHICAL Y"  Output vector of thenth library model.
NEURAL METHOD FOR MICROWAVE LIBRARY DEVELOPMENT YJ]'S Output vector of thejth base model.
B,(.) jth base model in the library. z Output vector of théth low-level neural module for
D™* Desired outputs of théth training sample for the the nth library model.
nth library model. AR Input vector of the high-level neural module of the
D3*  Desired outputs of théth training sample for the nth library model.
jth base model. zZmk Input part of thekth training sample for the high-
#" (i) Base model index of théth low-level module for level neural module of theth library model.
the nth library model.
H" High-level neural module for theth library model. | INTRODUCTION
L?  ith low-level neural module for theith library '
model. ECENTLY, a new computer-aided design (CAD) ap-

M]Jé Total number of training samples for thi¢h base proach based on neural networks has been introduced

model. for modeling of passive and active microwave components

M™  Total number of training samples for tigh library ~[1]-[5] and microwave circuit design [2], [4], [6], [7]. A neural

model. network can be developed by learning and abstracting from

Ng  Total number of base models in the library. microwave data, a process called training. Once trained, the

neural network can then be used during microwave design to
provide instant answers to the task it learned [2]. The recent
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circuit simulation and optimization [2], [9], [11], microstrip ule solution to the final output of the microwave component
circuit design [12], IC modeling [13] and process design [14inodel for each model in the library. Examples of transmission
synthesis [6], Smith Chart representation [7], and microwaliee neural model libraries, useful for design of high-speed
impedance matching [15]. Neural models can be much fas¥érSI interconnects, and a library of physics-based MESFET
than original detailed EM/physics models, more accurate theavices, are developed. Compared to standard neural model
polynomial and empirical models, allow more dimensiontechniques, the proposed hierarchical neural network approach
than table lookup models, and are easier to develop wheubstantially reduces the cost of library development due to
a new device/technology is introduced [11]. The costs fdess data collection and shorter training time, and at the same
developing neural models are mainly data collection and neutiahe improves model reliability.
network training. Technigques addressing microwave neural
model accuracy and efficient model development have been I[l. PROPOSEDHIERARCHICAL NEURAL NETWORK
proposed, e.g., [1]-[5]. APPROACH FORLIBRARY DEVELOPMENT

The success of these works opened the door for an even
more exciting possibility, i.e., developing massive neural ne&. Problem Statement: Library Development
work models for libraries of microwave components. This is of The objective is to develop libraries of passive and active

practical significance, since the realistic power of many CARyicrowave component models. Suppose a library consists of
tools depends upon the richness, speed, and the accuracyof microwave component models. For each model, say, the
their library models. For neural models, while the cost fQfiy model in the library, the input and output parameters
individual model development has been made manageabjg, represented by vectoX™ and Y™, respectively. The

e.g., [1]-[5], massively developing neural models for librariggyrary development is to create models to represent the
requires massive data generation and repeated model trgyiidimensional nonlinear relationship of

ing. This is a highly intensive process, and practically very \ e on
expensive using today’s neural model technique. Y'=Y"(X") 1)

In the neural network research community, a recent dy each value ofi, n = 1, 2, ---, No. We call the spaces
velopment called combining neural networks [16] is takingpanned byX™ andY™ as theX™ space and th& ™ space,
place, addressing issues of network accuracy and trainiRgpectively.
efficiency. Two categories of approaches have been developed-or example, to model a multiconductor transmission line
the ensemble-based approach and the modular approachfotruse in designing high-speed VLSI interconne®&, could
the ensemble-based approach [17], [18], several networks gggresent self and mutual inductances of the coupled conduc-
trained such that each network approximates the overall tasks. X™ could represent the physical/geometrical parameters
in its own way. The outputs from these networks are thejf the transmission line such as conductor width, separation
combined to produce a final output for the combined networketween coupled conductors, substrate height, and dielectric
The second category, e.g., [16], [19]-[21], features a modulggnstants. Many such neural models would be needed in order
neural network structure consisting of several neural networks,cover a variety of transmission lines in a VLSI interconnect
each optimized to perform a particular subtask of an overglésign, such as single-conductor line, dual strip lines, three-
complex operation. An integrating unit then selects or congonductor coupled lines, etc., leading to the need for a library
bines the outputs of the networks to form the final output @&f transmission line models, such as the strip line library
the modular neural network. Using combined neural netwogf Fig. 1. Using the standard neural model approach, e.g.,
structures instead of a single network, problem knowledge caultilayer perceptron structure (MLP), costly data collection
be incorporated into network structures, and the complexignd extensive model training have to be performed for each
of the overall problem can be divided and conquered mofgodel in the library. The total cost for library development
effectively [22]. This leads to improved overall network rewill be very high.
liability or training efficiency [21], [23]. However, most of
the existing network structures were motivated from signgl. Base Models
processing, classification, and pattern recognition applications

The specific challenges in developina microwave libraries a In the proposed approach, we first develop a set of base
SPECHIC challenges | veloping microwave fibraries r|lr(ij|0dels to capture the basic electrical or microwave character-

the suitable structures for incorporating RF/microwave I|brari¥tiCS common to the entire set of models in the library. For

knowk_—:-dge remain unanswered. - example, in a library of various multiconductor transmission
Motivated by the concept of combining neural networkz

we propose a new hierarchical neural network aporoach i’nre models, the self-inductance of a conductor is one of
prop PP e common characteristics needed for all the models in the

the development of a library of microwave neural mOdelﬁbrary. LetXJ,; andYJ,; be vectors representing the inputs and

In the approach, a distinctive set of base neural mOdelso'atputs of thejth base modelj = 1, ---, Ny, where N is

established. The basic microwave functional characteristi&se total number of base models in the library. Let the two
common to various models in a library are first eXtraCtegpiaces spanned b&j andY”. be called theX’ épace and
. B B B

and incorporated into base neural models. Then a hierarchiﬁ]ae Y7, space, respectively. Thith base model, realized by
B ! ) )

neural network is constructed for each model of the librar ; j
. . %neural network, relateX;, andY, by
with low-level modules realized by base neural models.

high-level neural module is trained to map the low-level mod- Y4, = B;(X%, W) )
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O Fig. 2. The proposed hierarchical neural network structdr@ndY repre-
sent the inputs and outputs of the overall netwdlk.is the ith low-level
module with an associated th¢h knowledge hubU,(-). w and =z rep-
resent the inputs and outputs of low-level modules. This structure can
be used for each model in a library. For example, for it model,

(e) Y=Y"H=H" 2 =2Z" L, = L', u; = w?, U; = U?, and
Fig. 1. Alibrary of stripline models. Theth model in the library represents X = X"
ann-conductor coupled stripline component. fay= 1, (b)n = 2, (c)n = 3,

dn=4,(e)n = 5.
base models can be considered as an overhead for the library

] , development. This task is done only once in the beginning of
where B; represents thgth base model an#; is a vector |iprary development. The benefit of creating these base models
including all the neural network weights of thith base model. 5 (ealized when we subsequently reuse them and combine

The definition of theX7, (or Y7) spaces is done by e in developing many component models for the library.
choosing a form of space conversion betwgeh andX™ (or,

j n - .
.YB aan ), and/or exammmg'the common characteristicé  Hiararchical Neural Model

in the library. Examples of typical forms of space conver- . , . )

sion are: same-space mapping, subspace mapping, or linedfOr €ach model in the library, a hierarchical neural network
transformation. Notice that the terminology “space mappingtructure is defined as shown in Fig. 2. The purpose of this
used here is in a totally different environment from that igtructure is to construct an overall model from several modules

[24] where the terminology was used for a new optimizatiof that the library base relationship can be maximally reused
algorithm. In our paper, the mapping betwexé{ andX" (or for every model throughout the library. This structure consists
Yg]'a and Y™) is called same-space mapping if they contaifff @ high-level neural module denoted #5* and several

the same set of parameters with equal or nonequal valu w-level neural modules denoted &', ¢ = 1,---, Np.
Subspace mapping means that, is a subspace o™ The low-level modules are realized by directly using the base
s .

Linear transformation means th;’(t]]'3 is obtained by linearly models. L?t index function - ¢"(i) be defined such that base
transforming X™. Examples of each of these cases will pahodel B; is selected as thith low-level neural module and

illustrated in Section Il of the paper. 1, for0 <i < Ng,

For microwave design, empirical formulas often exist ap- 2, for Np < i< Npj +Np,
proximating such base relationship; for example, the empirical . _ griy=d ()
approximation of self-inductance of a transmission line (i.e., J Np1 Np
Y4;) as a function of physical/geometrical parameters (i.e., Np, for Z Ng, <i< ZNEk

k=1 k=1

X{S) [25]. In this case, functional knowledge-based neural

networks (KBNN) [1] could be used incorporating such €MuhereN;  is the number of time®; is reused in the low level
pirical formulas into base neural models, further enhancing the »th'library model. Letuw and = be vectors representing

their rellab"'ty,-k . . . the inputs and outputs of low-level modules. Since ttie
Suppose X3", D) are pairs of training samples for thejoy-level module of thenth library model is realized by the
jth base model, wherk = 1, ---, M3, and M3 is the total ¢"(i)th base model,
number of training samples. Base neural models should be , ,
trained such that L} =Bj, uj = Xy, 2z =Y}, wherej =¢"(i) (5)
. M ik k|2 where« and 2’ represent the input and output vectors of
S Z ‘BJ(XE' , Wj)—Dg H (3)  low-level module in library modeln. For eachL?, i.e., the
k=1 ith low-level module, we define a structural knowledge hub
for j =1, ---, Ng. Each base model is trained by sufficient/’(.), such that it extracts inputs only relevant to thg¢)th

number of samples to a high accuracy. The training of all themse model out oX™ based on the particular configuration
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of the nth library component, i.e., because all such modules are a reuse of the same set of base
models which were trained only once in the beginning of

w = X5 =U7(X"), wherej = ¢"(). 6) library development.
The low-level neural modules produeé& by recalling the
trained base models in the library D. Algorithm for Overall Library Development
27 = L} (u}) = Byuy(u!', Wypy), i =1,2, -+, N (7) The overall library development is summarized in the fol-
) . lowing steps:
where W are the weights of theﬁ("%th base model, gy 1. Define the input and output spaces of base models,
and ¢(¢) = ¢™(i). Let vectorsU™ andZ be defined by ie. X]]'S and Yg]'a’ for j = 1,2, ---, N, and
concatenating the; and thez{ for all ¢, 2 =1, 2, .-, N, extract basic characteristics from library, using
respectively, i.e., microwave empirical knowledge if available.
uf z7 Step 2: Collect training data corresponding to each base
uy 2y model input and output, i.e., generate sample data
ur=1 . |, Z"=| . | (8) (X%*, D%*) for the jth base model, wherk =
,u'n. zn. 1727"'7Méandj:1727"'7NB-
N N Remark: Training data for base models should be adequate
All the low-level modules combined provide a map from in order to obtain reliable base models.
the U™ space to theZ™ space. A high-level modul#™ is Step 3: Construct and train base neural models incorpo-
defined mapping th&™ space to th&’™ space for eachth rating the knowledge from Step 1. Specifically,
model in the library. The high-level module is realized by a solve the optimization problem of (3) to fifk ;
neural network such thatB; (u, W ;) matches base model training
" U, data, forj =1, ---, Np. Letn = 1.

YU =H"(2", V") ) Remark: Steps 1-3 are done in the beginning of library
where V™ includes all neural network weights for module development and are considered overhead effort
H™. The relationship in (9) is much easier to model than the for the library. The next several steps, i.e., Steps
original Y™ = Y™(X™) relationship since much information 4-8, are the incremental effort for each component
is already contained in the base models in the low level. For model in the library.
example, even a linear two-layer perceptron 5 might be Step 4: According to the base model input space definition
sufficient to produce the find™. Consequently, the amount in Step 1, set up the structural knowledge hubs
of data needed to trailf™ is much less than that for training uj = U7(X"), which map the model input
standard MLP to learn origind™ = Y™ (X"). spaceX ™ into base model input spacé};, where

Suppose X™*, D™ ") are pairs of training samples for the J = ¢"(i) as defined in (4), and=1, ---, N}.
nth library model, wheré = 1, ---, M™, andM™ is the total This automatically sets up the low-level modules.
number of training samples. THE™ * data are mapped to the Step 5: Collect training data corresponding to the
U™ space through knowledge hubs and then feed-forwarded model in the library, i.e., generate sample
through the low-level modules (i.e., various reuse of base data (X™*, D™*) for the nth model, where
neural models) into theZ™ space. Consequently, a new set k=12, M"
of training samples, denoted by pairs &"¢*, D™ *) is ob- Remark: Only a small amount of training data is needed
tained, whereZ™ ¥ is the vector constructed by concatenating here under the proposed technique.

Z?,k = L" (U;L(X":k)), for all i, i = 1,---, N}. The Step 6: Map the X™* data into theZ" space through
high-level neural moduld™ should be trained such that knowledge hubs and low-level modules following
. (6) and (7).
il 2 Step 7: Train the high-level neural modulH™, i.e., solve

min S |[H (2, v —D"”“‘
i 223 a7 ¢ )

’ the optimization problem of (10) to finl™ such
that the outputs of the high-level module match
training data.

With a linear two-layer perceptron neural network as the Remark: This training step is very easy and fast since the

foreachn, n=1,..-, N.. (10)

high-level module, this optimization is simply a quadratic module H™ is very simple and in most cases,
programming problem. In this case, any training method will a simple linear two-layer perceptron network.
easily and quickly lead to a globally optimal training solution. Therefore, only a small and incremental effort is
This is in contrast to standard MLP approach with the original needed to obtain each model in the library.
nonlinearY™(X") relationship, where training usually takes Step 8: If n = Nc, then stop, otherwise proceed to train
a long time and might end at a local optimal solution of the the next library model by setting = » + 1 and
neural network, further prolonging the training process. go to Step 4.

Under the proposed method, the training of the high-level The algorithm described above permits the hierarchical
module is the only training needed for each model in theeural models to be developed systematically and enables the
library. No training is needed for the low-level moduledibrary development process to be maximally automated.
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wi $1 Wy . SN-1 WN Ly Ly Ly Ly Ly Ly <= Y"n-3
h : 4 Er <= H' n—3
Fig. 3. Details of a typicalV-conductor stripline component showing the
physical and geometrical parameters.
< ILin=3
. . ']
E. Discussions N
Our formulation allows the standard MLP approach to W’
library development as an extreme special case in our theor <= un-3
To illustrate this case, consider each library model as a base \\\\
model, andNg = N¢. The base model input and output 5\\\\\ \
spaces are defined the same as the library model input and \*‘\‘ g
b
output spaces, i.e., ~
Xp,=X", Y,=Y" j=n andn=1,2,---, N..
(11) )
wow, w8, 5, g h g <= Xhn=3

There is only one low-level module in each library model.
The knowledge hub is simply a relay block passiXg® Fig. 4. The hierarchical neural model for the third model in the stripline
directly to theU™ space library, i.e.,n = 3.

ul =UT(X™) = X" (12)
The high-level moduldf™ will also perform a relay fromz™
space to th&’™ space. Therefore, in the worst extreme ca

where basic characteristics common to various models in
same library are difficult to identify, our technique falls bac

to the standard MLP approach. gwéiuctance andB, for mutual inductance are defined. The

However, in many practical cases, models are group : . .
. . . inputs to the base models include physical/geometrical pa-
into a library due to certain common features. The propose ; .
eters such as conductor widtiz), conductor heigh{g),

r
approach becomes very advantageous when a few base modals . .
can capture the common characteristics in a library of maﬁgbstrate heightr), separation between conductds, and

models as demonstrated through the examples in the ne {';mve dielectric constarte,). The outputs ofB, and B,

of their input parameters. The detailed list of input and output
arameters of each model in the stripline library is shown in
able Il. Training and test data were obtained using LINPAR
%] simulator which is based on the method of moments.
1) Base Model SelectionsTwo base modelsB; for self-

are self and mutual inductances, respectively. Since for any

section. model in the library, shown in Fig. 1, the relation between
the self-inductance of a single conductor (and the mutual
1. EXAMPLES inductance between two conductors) and the corresponding
physical/geometrical parameters is always a useful partial
A. Example 1—Library of Stripline Models solution to the modeling problem, these two base models do

Multiconductor transmission line models are essential fé@Present basic characteristics useful to all the five stripline
delay and crosstalk analysis in high-speed VLSI interconndgPdels in the entire library. The stripline empirical formulas
design [11]. EM simulation of transmission line responses i [25] are adopted as functional knowledge incorporated into
slow especially if it needs to be repetitively evaluated. Neurtle KBNN's [1], which are the realizations of the base models
models, trained off-line from EM data, can be used onlinB1 and Bz. The KBNN structural parameters are represented
during VLSI interconnect design providing instant solutionBy number of boundary and knowledge neurons, e.g., b2z3
of the original EM problem. For practical VLSI interconnectepresenting two boundary and three knowledge neurons [1].
design, libraries of one-conductor, two-conductor, . .y The base modeld3; and B, are trained to an average
conductor transmission line models are needed. A brute fo€sting accuracy of 0.39 and 0.16%, respectively, as shown
approach is to train each library model separately, requirifigy Table Ill. Linear transformation is used as the form of
massive data generation and training. Here we apply tBeace mapping betweeXiy; (of Table Ill) andX™ (Table II).
proposed hierarchical approach to the development of a libr&ybspace mapping is used betwa&&p (of Table IIl) andY™
of neural models forV-conductor striplines shown in Fig. 3(Table II). The number of times base moddé#s and B, are
for different values ofN. In this example, the modeling of reused in each library model, i.ef\Zgj, is shown in Table II.
self and mutual inductances is presented for illustration. There2) Example of Library Mode{n = 1): Forn = 1, the li-
are five models in the libraryp = 1, 2, 3, 4, 5 as shown in brary model is for a single conductor transmission line and is
Fig. 1. And for eachnth model, the number of conductorsdirectly the base model,. Therefore, N3, = 1, N3, = 0.

N = n. Table | defines the notations for input and outputnowledge hub isUT(X™) = X". Low-level module is
parameters of stripline neural models and the effective rani¢ = B; and high-level module id1™(Z") = Z™.
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NOTATIONS FOR INPUT AND OUTPUT PARAMETERS OF STRIPLINE N—I;EAUBRI;II_EI\;ODELS AND THE EFFECTIVE RANGE OF THEIR INPUT PARAMETERS
Parameters Notation Range
the ith conductor width wi 0.05 mm — 0.25 mm
the separation between the
ith and i+1 th conductors Ky, 0.1 mm—0.82 mm
conductor height above ground g 0.08 mm — 0.25 mm
substrate height h 0.16 mm — 0.5 mm
relative dielectric constant & 2-10.2
self inductance of the ith conductor Ly N/A
mutual inductance between
the ith and jth conductors Ly N/A
TABLE 1l

STRIPLINE LIBRARY MODELS

Library Number of times
Model Model Neural model Neural model each base model
index name inputs outputs (B1, B2) is used

n X'l Y" Nﬂ" X Bj
n=I 1 conductor
stripline wghe Ly 1x B,
model
n=2 2 conductor
stripline wiw,sghe L;; Ly Ly, 2xB;,1xB;
model
n=3 3 conductor Wi WoW3S; s> L“,LU,L”‘L;;, 3 XBI, 3 XBJ
stripline ghe L3, Lss
model
WiwawswyS; | Ly, LiaLis Ly,
n=4 4 conductor 532 L33 L3 Ly Lss, 4x B;, 6 xB;
stripline ssghe Lo Ly
model
LII, L12, L13. LI4.
W Wy W3 Wy Ws L5, Loz Las Lo,
n=5 5 conductor | s, 525388 h Ljs Lss Lsg Lss, 5xB;, 10xB;
stripline £ Lyg Lys Lss
model
TABLE Il
BASE MODELS FOR STRIPLINE LIBRARY
Base Base Base Base model Base Model
model | model model Outputs model accuracy
index | symbol inputs structure | (average
j B Xz' Yy’ (KBNN) error)
1 B; wghe self inductance L b2z3 0.39%
2 B; w; w; s g h & | mutual inductance L, b4z6 0.16%

3) Example of Library Mode{n = 3):

each pair of conductors, i.e., conductors 1 and 2, conductors 2
For n = 3, the library model is for a three-conductorand 3, and conductors 1 and 3. The high-level neural module
coupled stripline component. We reuse the base models H3 is realized by a two-layer perceptron with six inputs (i.e.,
the lower level neural modules shown in Fig. 4. There atbe preliminary predictions of self and mutual inductances
six low-level neural modules. The knowledge hubs for thisom the six low-level modules) and six outputs (i.e., the
library model are defined in Table V. The six low-level neurdinal and refined predictions of self and mutual inductances
modules make a preliminary prediction of self-inductance faf the overall three-conductor stripline model) and with linear
each of the three conductors and mutual inductance betwdenctions in all output neurons. This is a linear combination
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TABLE IV
Low-LEVEL MODULES AND STRUCTURAL KNOWLEDGE HUBS FOR THREE-CONDUCTOR STRIPLINE, I.E., LIBRARY MODEL n = 3
Low level Inputs to module/Knowledge hub Index Base model
modules function used
L u’ =U’ (X") $'i) =7 By
ij u13=U15 (X3)=[W1 g h E,] ¢3(1) =1 B,
L’ u7 =U7 (X°)=[w: g h &] #(2) =1 B
L u’ =Us (X°) =[ws g h &) #'3) =1 B;
L(j u43 = U43 (Xj) = [W] w8 g h €,] ¢3(4) =2 BZ
Ls us=Us (X)) =[w,ws s g h &] $05) =2 B;
Lé u=Us (X°)=[w, ws s;+s: 8 h &) | ¢(6) =2 B,
TABLE V TABLE VI
MoDEL AccuRACY COMPARISON (AVERAGE ERROR ON TEST CoMPARISON OF NUMBER OF TRAINING SAMPLES NEEDED AND LIBRARY MODEL
DatA) BETWEEN STANDARD MLP AND THE PROPOSED ACCURACY FOR STRIPLINE LIBRARY WHEN DEVELOPED BY STANDARD MLP
MODEL FOR THREE-CONDUCTOR STRIPLINE MODEL AND THE PROPOSEDHIERARCHICAL NEURAL STRUCTURE, RESPECTIVELY
No. of training MLP MLP MLP Proposed Library Stripline model Number of training samples needed,
samples (8-8-6) (8-12-6) (8-16-6) model r'n(()idel name (and corresponding model accuracy)
15 15.20% 12 25% 1217% 052% Om ;X - Standard MLP Proposed model
25 10.61% 9.66% 9.96% 0.48% f:re‘i):; 0 264! + 3007
50 4.01% 1.79% 5.30% 0.41% models
100 1.36% 0.96% 1.80% 0.39% 1 conductor
300 0.87% 0.83% 0.86% 0.38% n=1 stripline model
500 0.84% 0.73% 0.79% 0.39% p 264, (0.42%) 0, (0.39%)
2 conductor
n=2 stripline model 400, (0.75%) 10, (0.56%)
3 conductor
& 20.00% L
g ’ n-3 striplinemodel 500, (0.73%) 15, (0.52%)
o 15.00% 4 conductor
% n=4 stripline model 700, (0.78%) 25, (0.74%)
2 10.00% S conductor
% 500% | n=3 stripline model 900, (0.99%) 35, (0.63%)
Yo
[ T
1 0.00% | stripline library Total = 2764 Total = 649
1 base modelB; training
no. of training samples 2: base modelB> training
—4—MLP(8-8-6) ——MLP(8-12-6)
—8—NM_P(8-168) -~~~ proposed modd

as model #3. It should be noted that efforts in developing those
Fig. 5. Model accuracy comparison (average error on test data) betwegfditional library models are small and incremental, since only
standard MLP and the proposed model for three-conductor stripline modelDeW training data is needed, and only the high-level neural
module H™ needs to be trained for eaeh

of low-level neural modules with no gating functions taking 5y Overall Library Accuracy and Development Cost—A
advantage of modular neural network concept. Each low-levebmparison: Using standard MLP for each library model,
neural module provides a portion of the inductance predictigRe total amount of training data needed for the library is
Contributing to the overall inductance prediction at the h|g[2'764 Samp'eS, and using the proposed approach the amount
level neural module. Only a small amount of training data (3§ only 649 (including 564 samples for base models, and 85
samples) is needed to train this high-level module of a thregamples for subsequent library models) as shown in Table VI.
conductor stripline model since the preliminary relationshipghe total training time for all library models using standard
of the model have already been captured in the base modgl$.p approach is 2 h and 10 min on Sun Ultra 1 Workstation
However, with the conventional MLP neural model (8, 1Z%or sych an illustrative library example. Using the proposed
and 16 hidden neurons), 500 samples are needed to achiegypgoach, the total training time is only 12 min.
model of similar accuracy, shown in Table V.

The tendency of library model accuracy versus the amount ) ) )
of training data is plotted in Fig. 5. As available trainind® EXa@mple 2—Library of Microstrip Models
data becomes less and less, the error of standard MLP growhn this example, a library of neural models f&r-conductor

quickly, but the proposed hierarchical library model remainessless microstrip lines is developet, = 1, 2, 3, ---, 5,
reasonable and reliable. i.e., a library of five models as shown in Fig. 6. Fig. 7 shows
4) All Library Models: All library models,n = 2, 3, 4, --- the details of a typical microstrip line from the library with

in the library, can be developed systematically in a similar wakie physical/geometrical parameters of the model defined. In
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TABLE VI
MICROSTRIP LIBRARY MODELS
Library Neural No. of times each
model Model model Neural model base model (B, B;,
index name inputs outputs B;,B,) is used
n X'l Y NBj" X Bj
1 condcutor
n=1 microstrip model w he L;; Cyy 1xB;, 1xB;
2 conductor L1 Lz Lo, 1xB;, 1xB;
n= microstrip model wshe Ci1,C12Coz 1xB; 1xB,
Lt Lz Lys Ly, 1xB;,3xB;
n=3 3 conductor ws;s; h L3 L33 Cpy, Ca, 1x B3 3xBy
microstrip model £ Ci3,Cy2,Cy3 Css
Lll. L12. L13, L14, L22,
4 conductor WS S28;3 h L23, L24, L33. L34, L44, 1x B], 6 x B,
n=4 microstrip model & C11,C12,C13,Crq Caa, 1x B; 6 x By
C23,C24 C33,C34 Cas
Ly, Lia Lys Lig Lys,
L33, L33, Ly, Lys Lss,
n=5 5 conductor WS 88384 L34,L35,L44,L45‘L55, 1 XB1, 10x B;
microstrip model he Ci11,C12,C13,C14,Cis, 1x B;, 10x B,
C22, CZJ, C24. C)J, C33.
C34, C35, C44, C45, C!.f,
TABLE VIl
BASE MODELS FOR MICROSTRIP LIBRARY
Base Base Base Base model Base Model
model model model Outputs Model accuracy
index symbol inputs structure (average
J B X5’ Yy’ (KBNN) error)
self inductance
1 B; w he L b2z3 0.16%
mutual inductance
2 B, ws heg L, b2z3 0.13%
self capacitance
3 B; w he C bilz2 0.18%
mutual capacitance
4 B, ws he Cn b4z6 0.31%

R w

@ h 3| e |
I l Fig. 7 Details of a typicaN-conductor microstrip component showing the
physical and geometrical parameters.
(b)
this library, we model the self and mutual inductance and
I ] capacitance as neural model outputs. All conductors have equal
() width, which is a reasonable assumption in many situations of
signal integrity analysis and design of VLSI interconnects. The
L | notations of parameters and parameter ranges of library neural
) models are defined similarly as those in Table I.
Table VII shows the detailed list of input and output param-
| | eters of each model in the microstrip library. Training and test
© data again were obtained using LINPAR [26] simulator which

is based on the method of moments.
1) Base Model Selectiondn this library, the most im-
portant basic characteristics of all models can be the re-

Fig. 6. The microstrip library. Thexth model in the library represents an
n-conductor coupled microstrip model. (&)= 1, (b) n = 2, (¢) n = 3,
dn =4, (egn = 5.
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TABLE IX
Low-LEVEL MODULES AND STRUCTURAL KNOWLEDGE HuBS FOR THREE-CONDUCTOR MICROSTRIP, I.E, LIBRARY MODEL n = 3

Low level | Inputs to module/Knowledge Hub | Index function | Base model

modules Used
L’ u'=U" (X") ) =j By
L’ ul=U7X})=[wh &) #) =1 B,
L7 wl=U"(X)=[ws h &] F2) =2 B;
Ly u=US (X)=[ws: h &) #3) =2 B;
L; ui=U;> (X)=[wsi+s: h &] #(4) =2 B,
Ly us’=US (X)) =[w h &) #5) =3 B;
L us =Us (X)=[w s; h &] #6) =4 B,
L/ u/ =U7 (X)=[ws, h &) 7)) =4 B,
Ly ug =Us' (X°)=[w s;+s: h &) F'8) =4 B,

TABLE X

MobDEL AcCURACY COMPARISON (AVERAGE ERROR ON TEST DATA) BETWEEN STANDARD MLP AND
THE PROPOSEDMODEL FOR THREECONDUCTOR MICROSTRIP COMPONENT, I.E., LIBRARY MODEL n = 3

No. of training MLP MLP MLP
samples (5-25-12) (5-30-12) (5-35-12) Proposed model
15 6.16% 6.63% 7.10% 0.42%
25 4.01% 4.57% 5.28% 0.40%
50 1.34% 2.33% 2.87% 0.38%
100 1.45% 1.67% 1.93% 0.38%
300 0.53% 0.43% 0.42% 0.35%

lationship between electrical parameters of self-inductantable 1X. The high-level neural modulH? is realized by a
and capacitance of a conductor (and mutual inductance am@hfully connected two-layer perceptron with eight inputs (i.e.,
capacitance between two conductors) and the microstrip phgseliminary inductance and capacitance prediction from low
ical/lgeometrical parameters. Four base modBlg, B2, B3, level) and 12 outputs (i.e., final inductance and capacitance of
and B, are created to represent these characteristics, respgbe-overall library model). This example takes advantage of the
tively. The inputs and outputs of the base models are defineddular neural network feature such that the overall library
in Table VIII. model is a linear combination with gating functions connecting
There exist empirical formulas for these characteristics four inductance (four capacitance) predictions from low-level
[25], approximating the relation between the self and muodules to six inductance (six capacitance) outputs at the high
tual inductance and capacitance for single or dual microsttgwvel. Only a small amount of training data (15 samples) is
lines. The base neural models are constructed incorporatmegeded to train this three-conductor microstrip model since
such functional knowledge through a KBNN [1] structur¢he preliminary relationships of the model have already been
combining the empirical information with the learning powecaptured in the base models. However, with the conventional
of neural networks. The base moddls, B>, Bs, and B,  MLP neural model (25, 30, 35 hidden neurons), 300 samples
are trained to an average testing accuracy of 0.16, 0.H3e needed to achieve a model of similar accuracy, shown in
0.18, and 0.31%, respectively, as shown in Table VIII. Linedable X.
transformation is used as the form of space mapping betweerFig. 8 shows the tendency of model accuracy as the amount
X, (of Table V1) andX™ (of Table VII). Subspace mapping of available training data is reduced. The error for the proposed
is used betweety’; (of Table VIII) andY™ (of Table VII). hierarchical model goes up only slowly, whereas the error for
The number of times base models are reused in each libréimg standard MLP models grows very quickly as the amount

model is shown in Table VII. of available training data is reduced.
2) Example of Library Mode{n = 1): For n = 1, the Ii- 4) Overall Library Accuracy and Development Cost—A
brary model is constructed simply by putting base modeGomparison: All library models, n = 2, 3,4, --- in the

B; and B3 together without any further training. Thereforelibrary, can be developed systematically in a similar way
¥ = B, Ly = Bs. H" relays from theZ™ space to the as model #3. The total amount of training data needed by
Y" space. standard MLP for the library is 1700 samples collected through
3) Example of Library Mode{n = 3): For library model electromagnetic simulations. The total amount of training data
n = 3, we reuse the base models as the lower level neurafjuired by the proposed approach is only 550 (including 400
modules following Fig. 2. There are eight low-level modulessamples for base models and 150 samples for all subsequent
four are for inductance prediction and four for capacitandidrary models) as shown in Table XI. Using standard MLP
prediction. The knowledge hubs for the model are defined fior each library model, the total training time for all library
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S 800% 18
£ —16 } {
o 600% gl
£ g
@ 400% 2 125
5 = 10 ¢
o 200% 2 8}
e E |
S 000% : i ‘ £’
0 10 200 300 40 50 g,
no. of training samples 0 " A
1 2 3 4 5
——MP(525-12) —B—MP(5-30-12)
—&—MLP(5-3512) ~~~ proposed model library size Nc

. . —$—MLP —i—proposed model
Fig. 8. Model accuracy comparison (average error on test data) between

standard MLP and the proposed model for three-conductor microstrip modely. 10. The total training time for developing neural model library of
microstrip lines versus the total number of models in the library. The overhead
training time of 14 min for the proposed approach due to base model training is
represented by the nonzero valué\at = 0. But the incremental training time

TABLE XI for adding each new model to the library is very small under the proposed
CoMmPARISON OF NUMBER OF TRAINING SAMPLES NEEDED AND MODEL approach. As the total number of models in the library increases, the total
ACCURACY FOR MICROSTRIP LIBRARY WHEN DEVELOPED BY STANDARD MLP  training time required by the proposed approach becomes substantially less
AND THE PROPOSEDHIERARCHICAL NEURAL STRUCTURE, RESPECTIVELY than that of the standard MLP approach.
Library Microstrip Number of training samples needed,
model model (and corresponding model accuracy,
index name training time)
n Standard MLP Proposed model
Overhead 0 1007 (0.17%, 22 sec)
for base 3007 (0.22%, 14 min)
models
1 conductor Source
n=1 | microstrip model | 100, (0.45%, 2.5 min) 0, (0.17%, 0 sec)

2 conductor
n=2 | microstrip model | 300, (0.42%, 14.8 min) | 10, (0.37%, 2 sec)

3 conductor Fig. 11. Physics-based intrinsic MESFET device model following [27].
n=3 | microstrip model | 300, (0.42%, 73.2 min) | 15, (0.42%, 4.8 sec)
4 conductor TABLE XII
m =4 | microstrip model | 500, (0.45%, 495 min) | 50, (0.56%, 35 sec) EFFECTIVE RANGES OF NEURAL MODEL
5 conductor INPUT PARAMETERS FOR MESFET LIBRARY
n=235 | microstrip model | 500, (0.37%, 416 min) | 75, (0.51%, 4.1 min)
Parameters Notation Range
microstrip library | Total = 1700 (16.7 hr) | Total = 550 (19.2 min) gate length ! 0.35 - 0.80 um
1 . gate width W 1 mm
L base models3; and Bj tralnlng channel thickness a 0.28 - 0.42 pm
2: base modelB:> and B, training frequency 7 05—25 Glz
gate bias voltage Ve S5-0V
drain bias voltage Vb 0.5-45V
1800
1600 } . . .
g 1400 models is 16.7 h on Ultra SparcStation, and using the proposed
=T .. . . . .
& 21000 | approach the total training time is only 19.2 min. Fig. 9 shows
% € 1000 the tendency of amount of required training data versus the
s % 800 size of library. Fig. 10 shows the tendency of total training
g E 600 time required versus the size of the library.
s ¥ 400
o .
= 200 ¢ C. Example 3: Library of MESFET Models
0 ‘ : - - . . . _— . .
0 1 2 3 4 5 The drive for first-pass-success in designing active mi-

crowave circuits leads to the need of physics-based transistor
device models which give more accurate predictions of device
behavior than empirical or equivalent models. However, such
Fig. 9. The total amount of training data required for developing neurplhysics-based models are too slow when used repetitively in

model library of microstrip lines versus the total number of models in théircuit design. Neural models. trained from physics-based EFET
library. The overhead data of 400 required for the proposed approach duedtot b d to inst ' fl dict bhvsics-| | devi
base model training is represented by the nonzero value Wher- 0. But ata, can be used to Instantly predict physics-level device

the incremental amount of data needed for training each new model in thehavior for repetitive use during simulation and optimization
library is very small under the proposed approach. As the total nUmbel;%. Here we demonstrate the proposed hierarchical approach

models in the library increases, the total amount of training data required f EET devi dels. F hi if |
the proposed approach becomes substantially less than that required b ed set o evice models. For this specific example,

standard MLP approach. we assume that the library consists of bias dependent S-

library size N¢

—4— MLP -~ proposed model
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TABLE Xl
Base MoDELS FOR MESFET LIBRARY
Base Base Base Base model Base Model
model model model outputs model accuracy
index symbol inputs _ structure | (average
J B X’ Y5’ (MLP) error)
1 B, a f Velp Siyofl = 0.4um 4-60-2 0.17%
2 B, afVeVo | Sixofl=04um 4-60-2 0.20%
3 Bj a f VG VD SZI Ofl = 04[071 4-60-2 0.21%
4 B, afVeVp | Spyofi=04um 4-80-2 0.18%
5 B afVeVp | Syofl=08um 4-80-2 0.28%
6 Bs afVeVp | Siyofl=08um 4-80-2 0.38%
7 B, afVeVp | Syofl=08um 4-80-2 0.36%
8 By afVeVp | Spofl=0.8um 4-80-2 0.29%
parameter models for MESFET'’s with different gate length Su Sz Su1 Sy < ¥ n-=35

values. A typical MESFET model in the library represents
the intrinsic FET structure following Khatibzadeh and Trew
[27], as shown in Fig. 11. The library contains ten models,
n=1,2,345 6,7, 8 9,10, and each model corresponds
to a FET with a fixed gate length of 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8m, respectively. The library
neural models are trained to predict the scattering parameters
from physical and electrical parameters of the deviké.
includes real and imaginary parts 8f:, Si2, S21, and S22, 5,
X™ includes frequency f), channel thicknessaj, gate bias
voltage V), and drain bias voltageVy,). Training and test
data were obtained by using OSA9@ith Khatibzadeh and
Trew models [27]. In this library, all transistors have assumed
gate width of 1 mm. The model parameters and their ranges
are shown in Table XII.

1) Base Model Selectiondn this library, the relationships V¢ ¥ a  f <= Xin=S
between the real and imaginary parts of the scattering Ray. 12. The hierarchical neural model for FET library model #5, ives; 5.
rameters, nameh5i;, Si2, So1, and Se2, and model input
parametersf, Vp, Vi, and a, are taken as the common
characteristics required for all transistor models. To represent3) Example of Library Mode{n = 5): For library model
these common characteristics, eight base modhls B, ---, n = 5, the input and output definition of the model is the same
andBsg are defined corresponding to four scattering parametearsthat of the base models. The difference is that the gate length
of two MESFET'’s, one with small gate length-£ 0.40 xm) is equal to 0.55um. The overall model structure is shown
and another with large gate length £ 0.80m) as shown in Fig. 12. There are eight low-level modules, i.&7 = 8,
in Table XIll. Same-space mapping is used betweep (of and L} = B;, Ly = B, ---, L} = Bg. Base models
Table XIIl) and X™, the inputs to both base models being thare used in the low-level neural modules to predict the S-
same as those for the other transistor models in the libraparameter pattern for different model inputs. Since model input
Subspace mapping is used betweééfy (of Table XIll) and space is exactly the same as that of base models, knowledge
Y™. The outputs of the base models are the real and imaginagbs simply perform relay operations, i.e), = U3 (X°) =
parts of individual S-parameters of the transistor. In thisx® ; = 1,2, ..., 8. The high-level neural modulé&l® is a
example, we demonstrate that conventional MLP structure cgfb-layer perceptron with 16 inputs and eight outputs (real
also be used to construct the base models, with testing accuragd imaginary parts o1, Ss2, Si2, andSs;). Out of the 16
shown in Table XIII. inputs, eight inputs correspond to the predictions from base

2) Example of Library Mode{n = 2): Forn = 2, the li- models By, B», B3, and By, while the other eight inputs
brary model is constructed by four base modéls, B>, Bs, correspond to the predictions from base modgis Bs, B,
and By, directly, without any further training, i.eL? = andB;. This example takes advantage of the modular network
By, L = By, L = By, L = By, H(Z*) = Z*. concept without any gating function. Table XIV and Fig. 13

show the comparison of model accuracy when this transistor
10OSA90 Version 3.@ptimization Systems Associations Inc., Dundas, Ont.i,S modeled by standard MLP (With 60, 80, and 100 hidden
Canada L9H 5E7, now HP EEsof, Santa Rosa, CA 95403. neurons) and the proposed model.

<—— H" n=35
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TABLE XIV
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MobEeL AccURACY COMPARISON (AVERAGE ERROR ON TEST DATA)
BETWEEN STANDARD MLP AND THE PROPOSEDMODEL
FOR LIBRARY MODEL, n = 5, oF MESFET LBRARY

No. of training MLP MLP MLP Proposed
samples (4-60-8) (4-80-8) (4-100-8) model
25 13.97% 15.15% 14.78% 2.14%
50 4.51% 4.30% 4.97% 0.99%
100 2.2%% 2.25% 2.57% 0.87%
150 1.71% 1.57% 1.62% 0.82%
200 1.46% 1.35% 1.37% 0.79%
300 0.96% 0.86% 0.94% 0.74%
§ 2000%
-
)
o 1500% |
£
=
3 1000%
2
@
S 500%
o
& 000% A - :
0 50 100 180 20 20 300
no. of training samples
——MP(460-8 —— MP(4-80-8)
——MP4-100-8) —k— proposed mood

Fig. 13. Model accuracy comparison (average error on test data) between
standard MLP and the proposed model for the MESFET library madel,5,

whose gate length equals 0.55n.

CoMPARISON OF NUMBER OF TRAINING SAMPLES NEEDED AND TRAINING TIME

TABLE XV

Usep FORMESFET LBRARY WHEN DEVELOPED BY STANDARD MLP
AND THE PROPOSEDNEURAL NETWORK STRUCTURE, RESPECTIVELY

Library MESFET Number of training samples needed,
model index model (and corresponding model accuracy,
n training time)
Standard MLP Proposed model
Overhead
for galse 0 3007, (0.23%, 4.22hrs)
mode’s 3007, (0.33%, 4.54hrs)
MESFET
n=1 (7=0.35 gam) | 300, (0.81%, 2.52 hrs) | 50, (0.70%, 1.4 min)
MESFET
n=2 (7=04 m) | 300, (0.88%, 2.64 hrs) 0, (0.23%, 0 min)
MESFET
n=3 (7=0.45 pm) | 300, (0.86%, 2.48 hrs) | 50, (0.66%, 1.4 min.)
MESFET
n=4 (7=05 pm) | 300, (0.88%, 2.32 hrs) | 50, (0.71%, 1.4 min.)
MESFET
n=35 (1=0.55 pm) | 300, (0.86%, 2.66 hrs) | 50, (0.99%, 1.4 min.)
MESFET
n=6 (/=06 pm) | 300, (0.89%, 2.18 hrs) | 50, (1.22%, 1.4 min)
MESFET
n=7 (1=0.65 gn) | 300, (0.82%, 2.45 hrs) | 50, (1.08%, 1.4 min)
MESFET
n=28 (1=07 pm) | 300, (0.87%,2.58 hrs) | 50, (1.05%, 1.4 min)
MESFET
n=9 (1=0.75 yom) | 300, (0.79%, 2.50 hrs) | 50, (0.77%, 1.4 min)
MESFET
n=10 (/=0.8 gm) | 300, (0.88%, 2.78 hrs) 0, (0.33%, 0 min)
MESFET | Total = 3000,(25.11hrs) | Total = 1000,(8.95hrs)
Library

1: base modelsB,, Bz, B3, and B, training
2: base modelsBs, Bs, B7, and By training

4) Overall Library Accuracy and Development Cost—
Comparison: Model n = 10 can be developed similarly as
modeln = 2. All other library models;» = 1, 3, 4, 6, 7, 8,
and9, can be developed easily in a similar fashion as library
model #5. Using the proposed library approach for each library
model, the training time and training data required are much
less as compared to the standard MLP approach as shown
in Table XV.

IV. CONCLUSIONS

A new problem, i.e., library of microwave neural model
development, is addressed. A new hierarchical neural model
approach is developed exploiting the inherent base relations
between library models and incorporating both functional and
structural knowledge. This approach can be applied to any
microwave neural model library development in which basic
electrical/microwave characteristics common to the library
exist. The efficiency of the proposed approach increases when
the library size increases, i.e., when a small set of base models
can be extracted to represent basic information of a large
number of library models. A significant cost reduction of
neural model library development has been achieved, due to
faster training and reduced need for data generation.
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