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Abstract—Neural networks recently gained attention as a fast
and flexible vehicle to microwave modeling, simulation, and
optimization. This paper addresses a new task in this area,
namely, the development of libraries of neural models for passive
and active components, a task with a potential significance to
many microwave simulators. However, developing libraries of
neural models is very costly due to massive data generation and
repeated neural network training. A new hierarchical neural
network approach is presented in this paper, allowing both
microwave functional knowledge and library inherent structural
knowledge to be incorporated into neural models. The library
models are developed through a set of base neural models, which
capture the basic characteristics common to the entire library,
and high-level neural modules which map the information from
base models to the library model outputs. The proposed method
substantially reduces the cost of library development through
reduced need for data collection and shortened time of training.
The technique is demonstrated through transmission line and
FET library examples.

Index Terms—Circuit simulation, modeling, neural network.

SUMMARY OF NOTATIONS FOR THEPROPOSEDHIERARCHICAL

NEURAL METHOD FORMICROWAVE LIBRARY DEVELOPMENT

th base model in the library.
Desired outputs of the th training sample for the

th library model.
Desired outputs of the th training sample for the
th base model.

Base model index of theth low-level module for
the th library model.
High-level neural module for theth library model.
th low-level neural module for the th library

model.
Total number of training samples for theth base
model.
Total number of training samples for theth library
model.
Total number of base models in the library.
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Number of times theth base model is reused in the
low-level neural modules of theth library model.
Total number of models in a library.
Total number of low-level neural modules in theth
library model.
Input vector of all the low-level neural modules of
the th library model.
Input vector of the th low-level neural module for
the th library model.
th knowledge hub for the th library model.

Weight vector of the high-level neural module for
the th library model.
Weight vector for the th base model.
Input vector of the th library model.
Input part of the th training sample for the th
library model.
Input vector of the th base model.
Input part of the th training sample for theth base
model.
Output vector of the th library model.
Output vector of the th base model.
Output vector of theth low-level neural module for
the th library model.
Input vector of the high-level neural module of the

th library model.
Input part of the th training sample for the high-
level neural module of theth library model.

I. INTRODUCTION

RECENTLY, a new computer-aided design (CAD) ap-
proach based on neural networks has been introduced

for modeling of passive and active microwave components
[1]–[5] and microwave circuit design [2], [4], [6], [7]. A neural
network can be developed by learning and abstracting from
microwave data, a process called training. Once trained, the
neural network can then be used during microwave design to
provide instant answers to the task it learned [2]. The recent
work by microwave researchers demonstrated the ability of
neural networks to learn and to model a variety of microwave
components, such as microstrip interconnects [1], [3], [8],
vias [3], spiral inductors [5], FET devices [1], [9], coplanar
waveguide (CPW) circuit components [4], and packaging and
interconnects [10]. Neural networks have also been used in
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circuit simulation and optimization [2], [9], [11], microstrip
circuit design [12], IC modeling [13] and process design [14],
synthesis [6], Smith Chart representation [7], and microwave
impedance matching [15]. Neural models can be much faster
than original detailed EM/physics models, more accurate than
polynomial and empirical models, allow more dimensions
than table lookup models, and are easier to develop when
a new device/technology is introduced [11]. The costs for
developing neural models are mainly data collection and neural
network training. Techniques addressing microwave neural
model accuracy and efficient model development have been
proposed, e.g., [1]–[5].

The success of these works opened the door for an even
more exciting possibility, i.e., developing massive neural net-
work models for libraries of microwave components. This is of
practical significance, since the realistic power of many CAD
tools depends upon the richness, speed, and the accuracy of
their library models. For neural models, while the cost for
individual model development has been made manageable,
e.g., [1]–[5], massively developing neural models for libraries
requires massive data generation and repeated model train-
ing. This is a highly intensive process, and practically very
expensive using today’s neural model technique.

In the neural network research community, a recent de-
velopment called combining neural networks [16] is taking
place, addressing issues of network accuracy and training
efficiency. Two categories of approaches have been developed:
the ensemble-based approach and the modular approach. In
the ensemble-based approach [17], [18], several networks are
trained such that each network approximates the overall task
in its own way. The outputs from these networks are then
combined to produce a final output for the combined network.
The second category, e.g., [16], [19]–[21], features a modular
neural network structure consisting of several neural networks,
each optimized to perform a particular subtask of an overall
complex operation. An integrating unit then selects or com-
bines the outputs of the networks to form the final output of
the modular neural network. Using combined neural network
structures instead of a single network, problem knowledge can
be incorporated into network structures, and the complexity
of the overall problem can be divided and conquered more
effectively [22]. This leads to improved overall network re-
liability or training efficiency [21], [23]. However, most of
the existing network structures were motivated from signal
processing, classification, and pattern recognition applications.
The specific challenges in developing microwave libraries and
the suitable structures for incorporating RF/microwave library
knowledge remain unanswered.

Motivated by the concept of combining neural networks,
we propose a new hierarchical neural network approach for
the development of a library of microwave neural models.
In the approach, a distinctive set of base neural models is
established. The basic microwave functional characteristics
common to various models in a library are first extracted
and incorporated into base neural models. Then a hierarchical
neural network is constructed for each model of the library
with low-level modules realized by base neural models. A
high-level neural module is trained to map the low-level mod-

ule solution to the final output of the microwave component
model for each model in the library. Examples of transmission
line neural model libraries, useful for design of high-speed
VLSI interconnects, and a library of physics-based MESFET
devices, are developed. Compared to standard neural model
techniques, the proposed hierarchical neural network approach
substantially reduces the cost of library development due to
less data collection and shorter training time, and at the same
time improves model reliability.

II. PROPOSEDHIERARCHICAL NEURAL NETWORK

APPROACH FORLIBRARY DEVELOPMENT

A. Problem Statement: Library Development

The objective is to develop libraries of passive and active
microwave component models. Suppose a library consists of

microwave component models. For each model, say, the
th model in the library, the input and output parameters

are represented by vectors and , respectively. The
library development is to create models to represent the
multidimensional nonlinear relationship of

(1)

for each value of . We call the spaces
spanned by and as the space and the space,
respectively.

For example, to model a multiconductor transmission line
for use in designing high-speed VLSI interconnects,could
represent self and mutual inductances of the coupled conduc-
tors. could represent the physical/geometrical parameters
of the transmission line such as conductor width, separation
between coupled conductors, substrate height, and dielectric
constants. Many such neural models would be needed in order
to cover a variety of transmission lines in a VLSI interconnect
design, such as single-conductor line, dual strip lines, three-
conductor coupled lines, etc., leading to the need for a library
of transmission line models, such as the strip line library
of Fig. 1. Using the standard neural model approach, e.g.,
multilayer perceptron structure (MLP), costly data collection
and extensive model training have to be performed for each
model in the library. The total cost for library development
will be very high.

B. Base Models

In the proposed approach, we first develop a set of base
models to capture the basic electrical or microwave character-
istics common to the entire set of models in the library. For
example, in a library of various multiconductor transmission
line models, the self-inductance of a conductor is one of
the common characteristics needed for all the models in the
library. Let and be vectors representing the inputs and
outputs of the th base model, , where is
the total number of base models in the library. Let the two
spaces spanned by and be called the space and
the space, respectively. Theth base model, realized by
a neural network, relates and by

(2)
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(a)

(b)

(c)

(d)

(e)

Fig. 1. A library of stripline models. Thenth model in the library represents
ann-conductor coupled stripline component. (a)n = 1, (b)n = 2, (c)n = 3,
(d) n = 4, (e) n = 5.

where represents theth base model and is a vector
including all the neural network weights of theth base model.

The definition of the (or ) spaces is done by
choosing a form of space conversion between and (or,

and ), and/or examining the common characteristics
in the library. Examples of typical forms of space conver-
sion are: same-space mapping, subspace mapping, or linear
transformation. Notice that the terminology “space mapping”
used here is in a totally different environment from that in
[24] where the terminology was used for a new optimization
algorithm. In our paper, the mapping between and (or,

and ) is called same-space mapping if they contain
the same set of parameters with equal or nonequal values.
Subspace mapping means that is a subspace of .
Linear transformation means that is obtained by linearly
transforming . Examples of each of these cases will be
illustrated in Section III of the paper.

For microwave design, empirical formulas often exist ap-
proximating such base relationship; for example, the empirical
approximation of self-inductance of a transmission line (i.e.,

) as a function of physical/geometrical parameters (i.e.,
) [25]. In this case, functional knowledge-based neural

networks (KBNN) [1] could be used incorporating such em-
pirical formulas into base neural models, further enhancing
their reliability.

Suppose ( ) are pairs of training samples for the
th base model, where , and is the total

number of training samples. Base neural models should be
trained such that

(3)

for . Each base model is trained by sufficient
number of samples to a high accuracy. The training of all the

Fig. 2. The proposed hierarchical neural network structure.XXX andYYY repre-
sent the inputs and outputs of the overall network.LLLi is the ith low-level
module with an associated theith knowledge hubUUU i(�). uuu and zzz rep-
resent the inputs and outputs of low-level modules. This structure can
be used for each model in a library. For example, for thenth model,
YYY = YYY n; HHH = HHHn; ZZZi = ZZZn

i
; LLLi = LLLn

i
; uuui = uuun

i
; UUU i = UUUn

i
, and

XXX = XXXn.

base models can be considered as an overhead for the library
development. This task is done only once in the beginning of
library development. The benefit of creating these base models
is realized when we subsequently reuse them and combine
them in developing many component models for the library.

C. Hierarchical Neural Model

For each model in the library, a hierarchical neural network
structure is defined as shown in Fig. 2. The purpose of this
structure is to construct an overall model from several modules
so that the library base relationship can be maximally reused
for every model throughout the library. This structure consists
of a high-level neural module denoted as and several
low-level neural modules denoted as .
The low-level modules are realized by directly using the base
models. Let index function be defined such that base
model is selected as theth low-level neural module and

for
for

for

(4)

where is the number of times is reused in the low level
of the th library model. Let and be vectors representing
the inputs and outputs of low-level modules. Since theth
low-level module of the th library model is realized by the

th base model,

where (5)

where and represent the input and output vectors of
low-level module in library model . For each , i.e., the
th low-level module, we define a structural knowledge hub

, such that it extracts inputs only relevant to the th
base model out of based on the particular configuration
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of the th library component, i.e.,

where (6)

The low-level neural modules produce by recalling the
trained base models in the library

(7)

where are the weights of the th base model,
and . Let vectors and be defined by
concatenating the and the for all ,
respectively, i.e.,

...
...

(8)

All the low-level modules combined provide a map from
the space to the space. A high-level module is
defined mapping the space to the space for each th
model in the library. The high-level module is realized by a
neural network

(9)

where includes all neural network weights for module
. The relationship in (9) is much easier to model than the

original relationship since much information
is already contained in the base models in the low level. For
example, even a linear two-layer perceptron for might be
sufficient to produce the final . Consequently, the amount
of data needed to train is much less than that for training
standard MLP to learn original .

Suppose ( ) are pairs of training samples for the
th library model, where , and is the total

number of training samples. The data are mapped to the
space through knowledge hubs and then feed-forwarded

through the low-level modules (i.e., various reuse of base
neural models) into the space. Consequently, a new set
of training samples, denoted by pairs of ( ) is ob-
tained, where is the vector constructed by concatenating

, for all , . The
high-level neural module should be trained such that

for each (10)

With a linear two-layer perceptron neural network as the
high-level module, this optimization is simply a quadratic
programming problem. In this case, any training method will
easily and quickly lead to a globally optimal training solution.
This is in contrast to standard MLP approach with the original
nonlinear relationship, where training usually takes
a long time and might end at a local optimal solution of the
neural network, further prolonging the training process.

Under the proposed method, the training of the high-level
module is the only training needed for each model in the
library. No training is needed for the low-level modules

because all such modules are a reuse of the same set of base
models which were trained only once in the beginning of
library development.

D. Algorithm for Overall Library Development

The overall library development is summarized in the fol-
lowing steps:

Step 1: Define the input and output spaces of base models,
i.e., and , for , and
extract basic characteristics from library, using
microwave empirical knowledge if available.

Step 2: Collect training data corresponding to each base
model input and output, i.e., generate sample data
( , ) for the th base model, where

and .
Remark: Training data for base models should be adequate

in order to obtain reliable base models.
Step 3: Construct and train base neural models incorpo-

rating the knowledge from Step 1. Specifically,
solve the optimization problem of (3) to find
such that matches base model training
data, for . Let .

Remark: Steps 1–3 are done in the beginning of library
development and are considered overhead effort
for the library. The next several steps, i.e., Steps
4–8, are the incremental effort for each component
model in the library.

Step 4: According to the base model input space definition
in Step 1, set up the structural knowledge hubs

, which map the model input
space into base model input space , where

as defined in (4), and .
This automatically sets up the low-level modules.

Step 5: Collect training data corresponding to the
model in the library, i.e., generate sample
data ( ) for the th model, where

.
Remark: Only a small amount of training data is needed

here under the proposed technique.
Step 6: Map the data into the space through

knowledge hubs and low-level modules following
(6) and (7).

Step 7: Train the high-level neural module , i.e., solve
the optimization problem of (10) to find such
that the outputs of the high-level module match
training data.

Remark: This training step is very easy and fast since the
module is very simple and in most cases,
a simple linear two-layer perceptron network.
Therefore, only a small and incremental effort is
needed to obtain each model in the library.

Step 8: If , then stop, otherwise proceed to train
the next library model by setting and
go to Step 4.

The algorithm described above permits the hierarchical
neural models to be developed systematically and enables the
library development process to be maximally automated.
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Fig. 3. Details of a typicalN -conductor stripline component showing the
physical and geometrical parameters.

E. Discussions

Our formulation allows the standard MLP approach to
library development as an extreme special case in our theory.
To illustrate this case, consider each library model as a base
model, and . The base model input and output
spaces are defined the same as the library model input and
output spaces, i.e.,

and

(11)

There is only one low-level module in each library model.
The knowledge hub is simply a relay block passing
directly to the space

(12)

The high-level module will also perform a relay from
space to the space. Therefore, in the worst extreme case
where basic characteristics common to various models in the
same library are difficult to identify, our technique falls back
to the standard MLP approach.

However, in many practical cases, models are grouped
into a library due to certain common features. The proposed
approach becomes very advantageous when a few base models
can capture the common characteristics in a library of many
models as demonstrated through the examples in the next
section.

III. EXAMPLES

A. Example 1—Library of Stripline Models

Multiconductor transmission line models are essential for
delay and crosstalk analysis in high-speed VLSI interconnect
design [11]. EM simulation of transmission line responses is
slow especially if it needs to be repetitively evaluated. Neural
models, trained off-line from EM data, can be used online
during VLSI interconnect design providing instant solutions
of the original EM problem. For practical VLSI interconnect
design, libraries of one-conductor, two-conductor, . . . ,-
conductor transmission line models are needed. A brute force
approach is to train each library model separately, requiring
massive data generation and training. Here we apply the
proposed hierarchical approach to the development of a library
of neural models for -conductor striplines shown in Fig. 3
for different values of . In this example, the modeling of
self and mutual inductances is presented for illustration. There
are five models in the library, as shown in
Fig. 1. And for each th model, the number of conductors

. Table I defines the notations for input and output
parameters of stripline neural models and the effective range

Fig. 4. The hierarchical neural model for the third model in the stripline
library, i.e., n = 3.

of their input parameters. The detailed list of input and output
parameters of each model in the stripline library is shown in
Table II. Training and test data were obtained using LINPAR
[26] simulator which is based on the method of moments.

1) Base Model Selections:Two base models, for self-
inductance and for mutual inductance are defined. The
inputs to the base models include physical/geometrical pa-
rameters such as conductor width , conductor height ,
substrate height , separation between conductors, and
relative dielectric constant . The outputs of and
are self and mutual inductances, respectively. Since for any
model in the library, shown in Fig. 1, the relation between
the self-inductance of a single conductor (and the mutual
inductance between two conductors) and the corresponding
physical/geometrical parameters is always a useful partial
solution to the modeling problem, these two base models do
represent basic characteristics useful to all the five stripline
models in the entire library. The stripline empirical formulas
in [25] are adopted as functional knowledge incorporated into
the KBNN’s [1], which are the realizations of the base models

and . The KBNN structural parameters are represented
by number of boundary and knowledge neurons, e.g., b2z3
representing two boundary and three knowledge neurons [1].
The base models and are trained to an average
testing accuracy of 0.39 and 0.16%, respectively, as shown
in Table III. Linear transformation is used as the form of
space mapping between (of Table III) and (Table II).
Subspace mapping is used between (of Table III) and
(Table II). The number of times base models and are
reused in each library model, i.e., , is shown in Table II.

2) Example of Library Model : For , the li-
brary model is for a single conductor transmission line and is
directly the base model . Therefore, .
Knowledge hub is . Low-level module is

and high-level module is .



2396 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

TABLE I
NOTATIONS FOR INPUT AND OUTPUT PARAMETERS OF STRIPLINE NEURAL MODELS AND THE EFFECTIVE RANGE OF THEIR INPUT PARAMETERS

TABLE II
STRIPLINE LIBRARY MODELS

TABLE III
BASE MODELS FOR STRIPLINE LIBRARY

3) Example of Library Model :
For , the library model is for a three-conductor

coupled stripline component. We reuse the base models as
the lower level neural modules shown in Fig. 4. There are
six low-level neural modules. The knowledge hubs for this
library model are defined in Table IV. The six low-level neural
modules make a preliminary prediction of self-inductance for
each of the three conductors and mutual inductance between

each pair of conductors, i.e., conductors 1 and 2, conductors 2
and 3, and conductors 1 and 3. The high-level neural module

is realized by a two-layer perceptron with six inputs (i.e.,
the preliminary predictions of self and mutual inductances
from the six low-level modules) and six outputs (i.e., the
final and refined predictions of self and mutual inductances
of the overall three-conductor stripline model) and with linear
functions in all output neurons. This is a linear combination
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TABLE IV
LOW-LEVEL MODULES AND STRUCTURAL KNOWLEDGE HUBS FOR THREE-CONDUCTOR STRIPLINE, I.E., LIBRARY MODEL n = 3

TABLE V
MODEL ACCURACY COMPARISON (AVERAGE ERROR ON TEST

DATA) BETWEEN STANDARD MLP AND THE PROPOSED

MODEL FOR THREE-CONDUCTOR STRIPLINE MODEL

Fig. 5. Model accuracy comparison (average error on test data) between
standard MLP and the proposed model for three-conductor stripline model.

of low-level neural modules with no gating functions taking
advantage of modular neural network concept. Each low-level
neural module provides a portion of the inductance prediction
contributing to the overall inductance prediction at the high-
level neural module. Only a small amount of training data (15
samples) is needed to train this high-level module of a three-
conductor stripline model since the preliminary relationships
of the model have already been captured in the base models.
However, with the conventional MLP neural model (8, 12,
and 16 hidden neurons), 500 samples are needed to achieve a
model of similar accuracy, shown in Table V.

The tendency of library model accuracy versus the amount
of training data is plotted in Fig. 5. As available training
data becomes less and less, the error of standard MLP grows
quickly, but the proposed hierarchical library model remains
reasonable and reliable.

4) All Library Models: All library models,
in the library, can be developed systematically in a similar way

TABLE VI
COMPARISON OFNUMBER OF TRAINING SAMPLES NEEDED AND LIBRARY MODEL

ACCURACY FOR STRIPLINE LIBRARY WHEN DEVELOPED BY STANDARD MLP
AND THE PROPOSEDHIERARCHICAL NEURAL STRUCTURE, RESPECTIVELY

1: base modelBBB1 training
2: base modelBBB2 training

as model #3. It should be noted that efforts in developing those
additional library models are small and incremental, since only
few training data is needed, and only the high-level neural
module needs to be trained for each.

5) Overall Library Accuracy and Development Cost—A
Comparison: Using standard MLP for each library model,
the total amount of training data needed for the library is
2764 samples, and using the proposed approach the amount
is only 649 (including 564 samples for base models, and 85
samples for subsequent library models) as shown in Table VI.
The total training time for all library models using standard
MLP approach is 2 h and 10 min on Sun Ultra 1 Workstation
for such an illustrative library example. Using the proposed
approach, the total training time is only 12 min.

B. Example 2—Library of Microstrip Models

In this example, a library of neural models for-conductor
lossless microstrip lines is developed, ,
i.e., a library of five models as shown in Fig. 6. Fig. 7 shows
the details of a typical microstrip line from the library with
the physical/geometrical parameters of the model defined. In
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TABLE VII
MICROSTRIP LIBRARY MODELS

TABLE VIII
BASE MODELS FOR MICROSTRIP LIBRARY

(a)

(b)

(c)

(d)

(e)

Fig. 6. The microstrip library. Thenth model in the library represents an
n-conductor coupled microstrip model. (a)n = 1, (b) n = 2, (c) n = 3,
(d) n = 4, (e) n = 5.

Fig. 7. Details of a typicalN -conductor microstrip component showing the
physical and geometrical parameters.

this library, we model the self and mutual inductance and
capacitance as neural model outputs. All conductors have equal
width, which is a reasonable assumption in many situations of
signal integrity analysis and design of VLSI interconnects. The
notations of parameters and parameter ranges of library neural
models are defined similarly as those in Table I.

Table VII shows the detailed list of input and output param-
eters of each model in the microstrip library. Training and test
data again were obtained using LINPAR [26] simulator which
is based on the method of moments.

1) Base Model Selections:In this library, the most im-
portant basic characteristics of all models can be the re-
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TABLE IX
LOW-LEVEL MODULES AND STRUCTURAL KNOWLEDGE HUBS FOR THREE-CONDUCTOR MICROSTRIP, I.E., LIBRARY MODEL n = 3

TABLE X
MODEL ACCURACY COMPARISON (AVERAGE ERROR ON TEST DATA) BETWEEN STANDARD MLP AND

THE PROPOSEDMODEL FOR THREE-CONDUCTOR MICROSTRIP COMPONENT, I.E., LIBRARY MODEL n = 3

lationship between electrical parameters of self-inductance
and capacitance of a conductor (and mutual inductance and
capacitance between two conductors) and the microstrip phys-
ical/geometrical parameters. Four base models, ,
and are created to represent these characteristics, respec-
tively. The inputs and outputs of the base models are defined
in Table VIII.

There exist empirical formulas for these characteristics in
[25], approximating the relation between the self and mu-
tual inductance and capacitance for single or dual microstrip
lines. The base neural models are constructed incorporating
such functional knowledge through a KBNN [1] structure
combining the empirical information with the learning power
of neural networks. The base models , and
are trained to an average testing accuracy of 0.16, 0.13,
0.18, and 0.31%, respectively, as shown in Table VIII. Linear
transformation is used as the form of space mapping between

(of Table VIII) and (of Table VII). Subspace mapping
is used between (of Table VIII) and (of Table VII).
The number of times base models are reused in each library
model is shown in Table VII.

2) Example of Library Model : For , the li-
brary model is constructed simply by putting base models

and together without any further training. Therefore,
. relays from the space to the

space.
3) Example of Library Model : For library model

, we reuse the base models as the lower level neural
modules following Fig. 2. There are eight low-level modules;
four are for inductance prediction and four for capacitance
prediction. The knowledge hubs for the model are defined in

Table IX. The high-level neural module is realized by a
nonfully connected two-layer perceptron with eight inputs (i.e.,
preliminary inductance and capacitance prediction from low
level) and 12 outputs (i.e., final inductance and capacitance of
the overall library model). This example takes advantage of the
modular neural network feature such that the overall library
model is a linear combination with gating functions connecting
four inductance (four capacitance) predictions from low-level
modules to six inductance (six capacitance) outputs at the high
level. Only a small amount of training data (15 samples) is
needed to train this three-conductor microstrip model since
the preliminary relationships of the model have already been
captured in the base models. However, with the conventional
MLP neural model (25, 30, 35 hidden neurons), 300 samples
are needed to achieve a model of similar accuracy, shown in
Table X.

Fig. 8 shows the tendency of model accuracy as the amount
of available training data is reduced. The error for the proposed
hierarchical model goes up only slowly, whereas the error for
the standard MLP models grows very quickly as the amount
of available training data is reduced.

4) Overall Library Accuracy and Development Cost—A
Comparison: All library models, in the
library, can be developed systematically in a similar way
as model #3. The total amount of training data needed by
standard MLP for the library is 1700 samples collected through
electromagnetic simulations. The total amount of training data
required by the proposed approach is only 550 (including 400
samples for base models and 150 samples for all subsequent
library models) as shown in Table XI. Using standard MLP
for each library model, the total training time for all library
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Fig. 8. Model accuracy comparison (average error on test data) between
standard MLP and the proposed model for three-conductor microstrip model.

TABLE XI
COMPARISON OFNUMBER OF TRAINING SAMPLES NEEDED AND MODEL

ACCURACY FOR MICROSTRIPLIBRARY WHEN DEVELOPED BY STANDARD MLP
AND THE PROPOSEDHIERARCHICAL NEURAL STRUCTURE, RESPECTIVELY

1: base modelsBBB1 andBBB3 training
2: base modelBBB2 andBBB4 training

Fig. 9. The total amount of training data required for developing neural
model library of microstrip lines versus the total number of models in the
library. The overhead data of 400 required for the proposed approach due to
base model training is represented by the nonzero value whenNc = 0. But
the incremental amount of data needed for training each new model in the
library is very small under the proposed approach. As the total number of
models in the library increases, the total amount of training data required by
the proposed approach becomes substantially less than that required by the
standard MLP approach.

Fig. 10. The total training time for developing neural model library of
microstrip lines versus the total number of models in the library. The overhead
training time of 14 min for the proposed approach due to base model training is
represented by the nonzero value atNc = 0. But the incremental training time
for adding each new model to the library is very small under the proposed
approach. As the total number of models in the library increases, the total
training time required by the proposed approach becomes substantially less
than that of the standard MLP approach.

Fig. 11. Physics-based intrinsic MESFET device model following [27].

TABLE XII
EFFECTIVE RANGES OF NEURAL MODEL

INPUT PARAMETERS FOR MESFET LIBRARY

models is 16.7 h on Ultra SparcStation, and using the proposed
approach the total training time is only 19.2 min. Fig. 9 shows
the tendency of amount of required training data versus the
size of library. Fig. 10 shows the tendency of total training
time required versus the size of the library.

C. Example 3: Library of MESFET Models

The drive for first-pass-success in designing active mi-
crowave circuits leads to the need of physics-based transistor
device models which give more accurate predictions of device
behavior than empirical or equivalent models. However, such
physics-based models are too slow when used repetitively in
circuit design. Neural models, trained from physics-based FET
data, can be used to instantly predict physics-level device
behavior for repetitive use during simulation and optimization
[2]. Here we demonstrate the proposed hierarchical approach
for a set of FET device models. For this specific example,
we assume that the library consists of bias dependent S-
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TABLE XIII
BASE MODELS FOR MESFET LIBRARY

parameter models for MESFET’s with different gate length
values. A typical MESFET model in the library represents
the intrinsic FET structure following Khatibzadeh and Trew
[27], as shown in Fig. 11. The library contains ten models,

, and each model corresponds
to a FET with a fixed gate length of 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8m, respectively. The library
neural models are trained to predict the scattering parameters
from physical and electrical parameters of the device.
includes real and imaginary parts of , and .

includes frequency (), channel thickness (), gate bias
voltage ( ), and drain bias voltage ( ). Training and test
data were obtained by using OSA901 with Khatibzadeh and
Trew models [27]. In this library, all transistors have assumed
gate width of 1 mm. The model parameters and their ranges
are shown in Table XII.

1) Base Model Selections:In this library, the relationships
between the real and imaginary parts of the scattering pa-
rameters, namely , and , and model input
parameters , and , are taken as the common
characteristics required for all transistor models. To represent
these common characteristics, eight base models, ,
and are defined corresponding to four scattering parameters
of two MESFET’s, one with small gate length ( m)
and another with large gate length ( m) as shown
in Table XIII. Same-space mapping is used between (of
Table XIII) and , the inputs to both base models being the
same as those for the other transistor models in the library.
Subspace mapping is used between (of Table XIII) and

. The outputs of the base models are the real and imaginary
parts of individual -parameters of the transistor. In this
example, we demonstrate that conventional MLP structure can
also be used to construct the base models, with testing accuracy
shown in Table XIII.

2) Example of Library Model : For , the li-
brary model is constructed by four base models, ,
and , directly, without any further training, i.e.,

.

1OSA90 Version 3.0,Optimization Systems Associations Inc., Dundas, Ont.,
Canada L9H 5E7, now HP EEsof, Santa Rosa, CA 95403.

Fig. 12. The hierarchical neural model for FET library model #5, i.e.,n = 5.

3) Example of Library Model : For library model
, the input and output definition of the model is the same

as that of the base models. The difference is that the gate length
is equal to 0.55 m. The overall model structure is shown
in Fig. 12. There are eight low-level modules, i.e., ,
and . Base models
are used in the low-level neural modules to predict the S-
parameter pattern for different model inputs. Since model input
space is exactly the same as that of base models, knowledge
hubs simply perform relay operations, i.e.,

. The high-level neural module is a
two-layer perceptron with 16 inputs and eight outputs (real
and imaginary parts of , and ). Out of the 16
inputs, eight inputs correspond to the predictions from base
models , and , while the other eight inputs
correspond to the predictions from base models ,
and . This example takes advantage of the modular network
concept without any gating function. Table XIV and Fig. 13
show the comparison of model accuracy when this transistor
is modeled by standard MLP (with 60, 80, and 100 hidden
neurons) and the proposed model.
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TABLE XIV
MODEL ACCURACY COMPARISON (AVERAGE ERROR ON TEST DATA)

BETWEEN STANDARD MLP AND THE PROPOSEDMODEL

FOR LIBRARY MODEL, n = 5, OF MESFET LIBRARY

Fig. 13. Model accuracy comparison (average error on test data) between
standard MLP and the proposed model for the MESFET library model,n = 5,
whose gate length equals 0.55�m.

TABLE XV
COMPARISON OFNUMBER OF TRAINING SAMPLES NEEDED AND TRAINING TIME

USED FORMESFET LIBRARY WHEN DEVELOPED BY STANDARD MLP
AND THE PROPOSEDNEURAL NETWORK STRUCTURE, RESPECTIVELY

1: base modelsBBB1; BBB2; BBB3, andBBB4 training
2: base modelsBBB5; BBB6; BBB7, andBBB8 training

4) Overall Library Accuracy and Development Cost—
Comparison: Model can be developed similarly as
model . All other library models, ,
and , can be developed easily in a similar fashion as library
model #5. Using the proposed library approach for each library
model, the training time and training data required are much
less as compared to the standard MLP approach as shown
in Table XV.

IV. CONCLUSIONS

A new problem, i.e., library of microwave neural model
development, is addressed. A new hierarchical neural model
approach is developed exploiting the inherent base relations
between library models and incorporating both functional and
structural knowledge. This approach can be applied to any
microwave neural model library development in which basic
electrical/microwave characteristics common to the library
exist. The efficiency of the proposed approach increases when
the library size increases, i.e., when a small set of base models
can be extracted to represent basic information of a large
number of library models. A significant cost reduction of
neural model library development has been achieved, due to
faster training and reduced need for data generation.
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